Requirements Monitoring
in Dynamic Environments

Stephen Fickas

Department of Computer Science
University of Oregon, Eugene OR 97403
email: fickas@cs.uoregon.edu

Abstract

We propose requirements monitoring to aid in the
maintenance of systems that reside in dynamic
environments.

By requirements monitoring we mean the insertion of
code into a running system to gather information from
which it can be determined whether, and to what degree,
that running system is meeting its requirements.
Monitoring is a commonly applied technique in support of
performance tuning, but the focus therein is primarily on
computational performance requirements in short runs of
systems. We wish to address systems that operate in a long-
lived, ongoing fashion in non-scientific, enterprise
applications.

We argue that the results of requirements monitoring
can be of benefit to the designers, maintainers and users of
a system - alerting them when the system is being used in
an environment for which it was not designed, and giving
them the information they need to direct their redesign of
the system.

Studies of two commercial systems are used to illustrate
and justify our claims.

1: Requirements monitoring in dynamic
environments

We focus on requirements engineering issues arising in
domains where the environment cannot be counted on to
remain static. The general problem is that requirements,
and the designs that emerge from those requirements, are
typically formulated within the context of an assumed set
of resource and operating needs and capabilities. As the
environment changes, it may render those assumptions
invalid, necessitating the corresponding evolution of the
system. This phenomenon is particularly prone to occur in
what Lehman has termed “E type systems”, whose
installation in some real world domain induces changes in
the environment itself, and so leads to altering the system’s
own requirements [Lehman 1980].

0-8186-7017-7/95 $04.00 © 1995 IEEE

140

Martin S. Feather

USC / Information Sciences Institute

4676 Admiralty Way, Marina del Rey CA 90292
email: feather@isi.edu

The two major questions we have been studying are as
follows:

i) How can we know when our system needs to be
evolved? In particular, how can we carry through to run
time the assumptions of resource and operating needs and
capabilities made at design time? For example, if we design
our system under one set of assumptions about the
environment, how can we know when they become invalid
once the system is in operation?

ii) Suppose we could detect environment changes that
necessitate evolution of our system - how can we use this
information to orchestrate this evolution? In the ideal case,
we would like this process to be automatic: monitoring
information would be consumed by the system itself,
which would adjust its own structure or functionality. More
prosaically, we may supply this information to the human
maintainers of the system, who will thus be aided in their
task of evolving their system.

Our approach has been to cast the first question as a
problem of requirements monitoring: we advocate that as
part of the design of a system, requirements monitors be
installed to gather and analyze pertinent information about
the system’s run-time environment. We formulate
specifications of what to monitor so as to gather the
information needed to detect divergences from our
assumptions that adversely affect adherence to
requirements. We address the second question by recording
at design time not only the requirements, but also the
assumptions comprising the context in which those
requirements were formulated, and the compensatory
evolutions that we might employ when those assumptions
become invalid.

2: First case study - license managers

We have studied the above issues using a small but
representative problem, a distributed license manager
running in an enterprise. The purpose of a license manager
is to allow duplicate copies of a piece of software to be used
simultaneously by some number of users; the enterprise

will have purchased a number of ‘licenses’ for that
software, and at any one time up to that many users should
be allowed to simultanecusly use the software; the vendor,
from whom the licenses were purchased, relies upon the
license manager to ensure that at any one time the number
of simultaneous users does not exceed the number of
purchased licences. License managers are of interest to us
because there is a wide range of environments in which
they reside. The environmental features affecting the
license manager include number of potential users, patterns
of usage, number of licences purchased, network
performance, and available computational resources. More
importantly, those environments are often dynamic - that is,
their features vary over time. The number of potential users
may vary, new computational resources replace old ones,
etc. Such volatility is inevitable in companies that keep
pace with changing economic circumstances and changing
technology.

We have studied one license manager in particular -
FlexLM, distributed as part of the Solaris software package
by Sun. FlexL.M has been designed to be applicable in a
wide variety of environments. It offers a set of “design
parameters” to tune. In essence, the designers of FlexLM
anticipated a range of different types of environments in
which the system might be deployed, and provided system
administrators with some design freedom in setting up the
license manager for operation in their particular
environments. Thus for our purposes, the ‘design task’ we
focus upon is the selection (and re-selection) of those
parameter settings. This frees us from the need to modify
program code, which is itself a very difficult task!

We are interested in what happens as changes occur to
the environment in which the license manager has been
placed. An example is a change in pattern of usage by users
- if they become tardy in returning licenses when they no
longer need them, and this is causing other users to have to
wait a long time to get a license, the administrator may
wish to switch to a design in which licenses have a time-
bound placed on them (or to decrease the time bound if
such a design is already in use).

We will return to the example of license managers after
describing more of our general approach.

3: General approach - linking
requirements, assumptions and
evolutions

In general, our approach is to establish the relationships
among the following three concepts: ‘
e the overall requirements,
* the assumptions made about the current state of the
environment, and

141

* the set of remedial evolutions available when mis-
matches develop between assumptions and the cur-
rent environment.

We propose the use of monitoring to detect the relevant
changes to the system’s environment. What to monitor for
is determined by consideration of the relationships among
requirements and assumptions. This yields a specification
of monitoring needs. From such a specification, run-time
monitoring code (that gathers information and performs
analysis) is compiled. Related work on monitoring for
debugging and performance tuning provides existing
capabilities for such compilation (for a survey of such
work, see [Mansouri-Samani & Sloman, 1993]). Note that
for debugging or performance tuning the perturbation
caused by the insertion of monitoring code threatens to
disturb the information gathered and the conclusions drawn
from that gathered information, and so must be done with
great care. However, what to monitor for is usually
obvious, for example, unbalanced loads on multiple
processors, or communication bottlenecks. In contrast, for
our purposes the perturbation induced by insertion of
monitoring is not usually of great concern because it will
not usually alter the inferences we draw from the gathered
information, whereas the determination of what to monitor
is the essence of the problem. Thus we feel confident that
once we have developed monitoring specifications (i.e.,
determined what to monitor for) we can readily apply
existing monitoring tools and techniques to create the
actual monitoring code. We therefore will focus solely
upon the relationships between requirements and
assumptions about the environment, to understand how
they give rise to monitoring specifications and how the
results of monitoring can be applied.

4: More on the license manager
The overall requirements of our license manager are as
follows:

1. At any one time, the number of simultaneous
users of a piece of software should not exceed the
number of licenses purchased for that software.

2. Users should not have to wait unduly long for a
license.

3. No more licenses than are necessary should be
purchased.

4. Users should find the license manager to be as
unobtrusive as possible.

5. The running license manager itself should not
overly burden the system resources (cpu time,
network bandwidth, storage space).

Note that the vendors of software, and the users of
software, have competing interests. For example, users

Table 1: Users should not have to wait unduly long for a license

Subdivided Requirement

Assumption

Remedy

Licenses sufficient for user population

User population < k

Purchase more licenses or reduce user
population

No more than x% of user popu-
lation wants to use at once

Purchase more licenses or reduce user
population

Individual users served licenses fairly
license first

Longest waiting user gets

Have license manager maintain queue of
waiting users

Users do not hog licenses

Issue time-bounded licenses

Revoke licenses of current users

Users not kept waiting if licenses are

available platform

License manager on reliable

Relocate license manager to more reliable
platform

Employ more robust license manager
design (backup, majority)

License requests do not become
backlogged at license manager

Subdivide license manager & licenses
across several platforms

might like to ‘cheat’ by violating the first requirement,
while vendors might prefer a license manager that made it
likely that users would purchase more licenses than strictly
necessary. The license manager itself sits in the middle of
these competing interests, and our presumption is that the
above set of requirements (or something like it) represents
a balance deemed fair and acceptable to all concerned.

In most cases, requirement 1 is a ‘hard’ requirement,
ensured by the license manager. There is little purpose in
trying to monitor for violations to this requirement, since
our monitoring would likely not be any more effective than
the license manager itself in detecting violations.

The remaining requirements are typical of ‘soft’
requirements, which are tricky to design for, particularly in
the context of a dynamic environment. They are expressed
with varying degrees of precision (e.g., numbers 2,4 and 5
are stated rather informally). They may be mutually
incompatible (e.g., improved satisfaction of 2 through 4
may require consumption of more system resources, thus
degrading satisfaction of 5). It is these requirements that
induce the greatest need for the kind of monitoring we
advocate, and offer the greatest challenge to determine
precisely what to monitor for. Because FlexLM’s design
parameters give us the freedom to tune its installation, we
can readily explore a large space of alternative designs that
achieve a variety of compromises among these
requirements.

142

To illustrate our approach, we now consider
requirement 2 in more detail: Users should not have to wait
unduly long for a license to use a piece of software. We
manually subdivide this requirement into several cases,
each of which is a finer-grained requirement. For each
subdivided requirement we identify the corresponding
assumption(s), and in turn, for each assumption, the
corresponding remedy(ies) of how to evolve the design in
the case that the assumption is violated. This is shown in
table 1. In general, subdivision of requirements is done by
following a process closely related to that described in
[Dardenne, van Lamsweerde & Fickas, 1993]. A top-level
requirement is subdivided and the assumptions behind the
resulting sub-requirements are identified, to emerge with
assumptions that are candidates for monitoring and
remedial action. Generally, this process clarifies the
informality present in the initial requirements. The last step
is to identify possible remedies to apply when the
assumptions are violated; remedies take the form of
evolutions to be applied to the system’s design.

For example, the initial requirement can be monitored
(by watching for a user who is kept waiting longer than
some pre-determined time for a license), but has no
immediately identifiable assumptions or remedies to take
upon detection of violations. In contrast, the above sub-
requirements do have clear assumptions underlying them,
such as the bound on the user population. Some of the

remedies are straightforward, although not necessarily
acceptable (e.g., purchase of more licenses will require
additional funds, which might not be available). Some
depend upon conditions that arise because of the imperfect
nature typical of the distributed environments within which
most license managers must operate - communication over
networks can degrade or fail, individual machines (on
which users and/or the license manager itself are running)
can become overloaded or fail. For example, we may make
an assumption of high reliability of the machine on which
the license manager will be located, and, on the basis of this
assumption, select a design that will (i) cause the license
manager to run on that one machine, and (ii) cause licenses
to expire whenever the license manager itself is inoperative

(in particular, when it’s machine crashes)!. Monitoring for
violations of this assumption (i.e., downtime of the
machine on which the license manager is located) can be
used to detect when this has caused users holding licenses
to lose the use of them, and waiting users to be unable to
get a license. One possible remedy is to switch to a design
in which the license manager is replicated across several
machines, and a user’s license remains valid as long as that
user remains in live communication with a majority of
those machines. Note, however, that this design is less
satisfactory with respect to requirement 5, and so should
not be selected without good reason.

As well as gathering information on how the
assumptions and requirements are met (or not met) by the
current design, monitoring can also be used to answer
‘what if" questions about candidate alternative designs.
Continuing the preceding example, if the current design is
of the manager running on a single machine, we could
monitor for how much more reliable it would have been
had the manager been subdivided into several incarnations
running on separate machines, by monitoring the status of
not only the license manager’s machine, but also the status
of those other machines.

We have experimented with monitoring a simulation of
license management, modeling the key concepts of users,
licences, etc., and encoding monitoring queries as Al-like
daemons that watch for occurrence of those monitoring
conditions. This is straightforward to do using our in-house
APS5 environment, which provides modeling capabilities
together with the ability to declare daemons whose triggers
have access to all the information present in the model
[Cohen 1989]. Our focus has been the determination of

1. The latter may seem to indicative of a poor
design decision, but in fact admits designs in
which licenses are quickly ‘retrieved” when
users’ machines crash, and so supports require-
ment 4.

what to monitor for; making the monitoring itself efficient
has previously been studied by our colleagues [Liao, 1994].

While our simulation allows us to place monitors in the
right places, it is worth noting that FlexLM, itself, does not
provide for many of the types of environment monitors we
discuss in this section. For example, FlexLM does not
provide a “tardiness monitor” that allows us to measure
statistics on users keeping a license longer than necessary.
Looking more generally at table 1, we require observation
of changes to: size of user population, size of license pool,
status of platform (running or down?), status of license
server users (waiting for license?), etc. FlexLM does not
offer broad support for such observations. The next system
we look at, Lotus Notes, provides much more detailed
“logging” information of events that relate to our
assumptions. Given that we don’t often need to know
immediately violations of our assumptions -- for the
purposes of monitoring “soft” requirements, it is not
crucial that the system detect violations at once -- we can
afford to gather information as it becomes available
(logging), and do the analysis opportunistically (during off
hours, when connections are restored, etc.).

5: Second case study - Lotus Notes

We now turn to a new domain, that of building
groupware applications using Lotus Notes. This domain
provides several benefits from our point of view:

1. Itis a complex problem - developing Lotus Notes
applications retains the difficult aspects of
FlexLM (distributed application, efficiency
issues, security issues) while adding several new
concerns (database/groupware issues, mobile
clients).

2. Itis aproblem that is in need of automated support
- system administration of Lotus Notes is known
to be a hard task. At least part of the difficulty
arises from keeping up with a changing
operational environment, a problem that we wish
to address in our work.

3. Lotus Notes has built-in monitoring tools
(FlexLLM has no such tools). While these tools are
low level, they do provide a foundation to build
more sophisticated requirements monitoring tools
such as those discussed in this paper.

4. Lotus Notes, in general, is an open system. It runs
across platforms (Unix, PC, Mac) and has a well
defined APIL It is well suited for actual field
evaluation (as opposed to strictly laboratory
simulation as the case with FlexLM). We have an

interest in testing our work in a semi-realistic
environment and Lotus Notes gives us the
capability to do so.

For these reasons, we have turned our post-FlexLLM atten-
tion to Lotus Notes as a study domain. We will describe an
example problem in this domain. For readability, we will
attempt to parallel our presentation of the previous
FlexILM example.

5.1: Brief introduction to the Lotus Notes
domain

Lotus Notes supports a distributed web of databases
shared by users. Each database is associated with a primary
server, which is where conceptual changes to the database
take place (e.g., a change in the structure or views of a
database). However, databases can be replicated across
servers. This allows client programs (associated with
database users) to choose the server that is most convenient
for them to work with.

Lotus Notes supports mobile users through two
mechanisms: (1) dial-up service and (2) local databases
residing on a laptop. As an example, a mobile user M might
perform the following steps:

1. Before going in to the field, download a database
D from server A to M’s laptop, making a local
copy of D on the laptop.

2. In the field, M makes changes to the local D as
appropriate.

3. Periodically M phones in to the most convenient
server (i.e., server A or any other server that
replicates the database D from A) and updates the
local version of D (as well as updates the main
version of D residing on A and other servers
replicating D).

A particular point worth noting is one brought up by
replication: how will problems of inconsistency be
resolved? In our scenario involving mobile user M, what if
M makes changes to the local D (in step 2) that are
inconsistent with changes others have made to the main
version of D? In step 3, Lotus Notes will find the
inconsistencies when M phones in and an attempt is made
to bring both local and main versions of D up to date. Lotus
Notes handles these inconsistencies by splitting the
database D into two versions on server A. The
administrator of D (every database has an associated
administrator) is alerted to the inconsistent versions, and
must manually join the two versions back into one. This
joined version is then replicated where necessary.

An interesting conflict is raised by the way Notes
handles inconsistency: a mobile user M can selfishly stop
phoning in with new updates (to avoid long and onerous

144

transfer times over slow phone lines), and instead dump all
changes accumulated over a trip when M gets back to the
main office. This takes the burden off of the user M to
attempt to work with the most up to date database, and puts
the burden on the database administrator to deal with
potentially wildly inconsistent database versions once M
returns. The conflict among vendors and users in FlexLM
is similar in spirit. A broad approach to the role of conflict
resolution in requirements engineering is taken up in
[Robinson&Fickas, 1994]; we will not touch on it in any
depth in this paper.

In summary, there are several key questions in
designing a Lotus Notes application:

* How many servers are needed and in what topol-
ogy?

* Related, what databases reside on what servers, both
as primary and replicated databases?

* How often should replication be done for LAN-
based servers?

* How often should replication be done for mobile
users?

* How much of a database needs to be replicated for
specific users or groups of users? (Lotus Notes pro-
vides tools for replicating only pieces of a database
on a per server or per user basis.)

Taking the perspective raised in this paper, each of these
questions has a different answer depending on the current
state of the operational environment, e.g., how many users,
usage patterns, number of databases, size of databases,
mobility necessary, etc.

5.2: Applying our method to Lotus Notes

For Lotus Notes applications, we postulate the
following as the key top-level requirements:

1. Efficient use of system resources (cpu time,
storage space, network bandwidth, etc.).

2. Security - certain documents have access
restrictions (e.g., only certain sets of users can
read them, and a still smaller subset can write
them).

3. Maintainability - efficient use of administrators'
time,

4. Speedy user-access to information held within
Notes databases.

5. Access to up-to-date information held within
Notes databases.
Requirement 2 is a hard requirement, ensured by Lotus
Notes. As was the case with FlexLM, there is little purpose
in trying to monitor for violations to such hard

Table 2: From Administrator’s Guide

To assess...

Use this statistic

Comments

Load

Server.Trans. Total

Use for monitoring how much the server
is in use; if this number is consistently
higher than other servers and performance
is a problem, you may want to distribute
the server’s load or add a server.

Table 3: Access to up-to-date information held within Notes databases

Subdivided Requirement

Assumption

Remedy

% of accesses to out-of-date data < x%

% of out-of-date data

<y% | re-align immediately when assumption is

violated

out-of-data to

proportion of accesses to

accesses to all-data < z%

re-align immediately when assumption is -
violated

User warned if data potentially
out-of-date

updated-flag propagated
immediately on update

explicitly query all replications
of database

Critical data must be up-to-date

when queried on server s server s

updates to data always made on

explicitly query all replications of data-
base

requirements, since our monitoring would likely not be any
more effective than the system itself in detecting
violations.

Again, for the purposes of this paper we will focus in
detail on (some of) the remaining soft requirements, to
show the application of our methodology to produce a
linked structure of subdivided requirements, design
assumptions and compensatory remedies. It is interesting
to observe that the Lotus Notes documentation already uses
something very close to this structure to guide
administrator activity. For instance, the administrator’s
guide discusses means of ensuring continued satisfaction
of the sub-requirements of requirement 1 (efficient use of
system resources). To illustrate, we reproduce a portion of
Table 8-11 on page 8-33 of the Lotus Notes
Administrator’s Guide [Lotus Notes, 1994] (see Table 2
above).

Observe that the implicit assumption here is that the load
across servers is evenly balanced. This is in support of a
sub-requirement that system resources be used efficiently,
namely the efficient use of servers. Lotus Notes provides
the capability to monitor usage of individual servers. The
recommendation here is that the administrator (manually)
amalgamates this measure, gathered from servers across
the enterprise, to determine if and when load becomes

145

unbalanced. One of the suggested remedies is to
redistribute the load. Comparing this to our methodology,
it is clear that we would produce something quite similar.
We would be more explicit in identification of the
assumption being monitored for, and would like to be able
to have the system automatically monitor for the composite
condition (unbalanced load), as opposed to leaving this to
be computed by the administrator. Since efficient use of
computational resources has been a continual concern
throughout the history of computers, it is hardly surprising
that this kind of approach is documented, and supported by
the inclusion of appropriate monitoring capabilities (the
‘statistics’ of the cited table). Our suggestion is that this
same approach can be profitably applied to many kinds of
requirements, including those often thought of as “soft'. We
focus on one of these, next.

Consider requirement 5: Access to up-to-date
information held within Notes databases. This is a concern
in Lotus Notes applications when the database is
‘replicated’, because the multiple replicas of a single
database are not synchronized continually. Instead,
changes are allowed to occur on those different replicas,
and from time to time they are re-aligned. Of concern to us
is the possibility that a user may access out-of-date data
from one of these replicated databases. As is typical with

the ‘idealized’ requirements we have formulated, it is
unlikely that any possible design will guarantee to satisfy
this requirement perfectly. Instead, any given design will
be a compromise among the multiple idealized
requirements, where the particular compromise is chosen
with a set of operating assumptions in mind. Following our
methodology, we subdivide requirement 5 into pieces,
identify the assumptions underlying each of those pieces,
and associate remedial actions to consider applying when
those assumptions are violated.Table 3 shows such a partial
breakdown of this requirement.

Lotus Notes describes policies of fixed-interval re-
alignment of replicated databases. Clearly, the
determination of what the interval should be presumes a set
of operating conditions that may well change over time.
Furthermore, it is hard to characterize the extent to which
such a policy will meet the overall requirement of access to
up-to-date information. In contrast, our breakdown of the
requirement is in terms of (what we postulate to be) typical
sub-requirements; because they are refinements of the
idealized requirement, it is feasible to design for some of
them to be satisfied perfectly. As indicated, a typical design
might make certain assumptions about the operating
conditions so as to guarantee satisfaction of the
corresponding sub-requirement. These assumptions could
be monitored by building the appropriate monitoring
computations as compositions of the primitive monitoring
tools provided by Lotus Notes. Lastly, we indicate possible
remedial actions to take when violations of the assumptions
are detected. For table 3, these remedial actions have the
potential to be automated: Lotus Notes provides an API
that makes available low level functions on which to build
higher level remedial actions such as shown in column 3.

6: Current state

The long range goals of our research are (i) to integrate
a requirements methodology with a requirements
monitoring framework, and (ii) to automate the
“realignment” of the system when monitoring shows a
changing operational environment has allowed
requirements to be violated. To date, we have carried out
the following steps towards these two goals:

1. We have used the requirements refinement
methodology of [Dardenne, van Lamsweerde &
Fickas, 1993] to manually evolve the ideal
requirements of two systems, FlexLM and Lotus
Notes, into specific assumptions. We have shown
pieces of these requirements evolutions in this

paper.

146

2. We have used the assumptions derived to produce
monitor specifications. We have manually
implemented these specifications in an AP5
simulation of FlexLM and on top of Lotus Notes
monitoring tools.

3. Given detection of requirements violations, we
have manually made modifications to the systems
to bring them back into conformance.

Migrating each of these manual steps to automated steps
can be viewed as crucial depending on which research
group you talk to: groups doing performance tuning for
parallel scientific applications will point to step 2, the
implementation of monitoring, as a key concern; groups
doing debugging for the same applications will point to
step 3, program modification, as a key concern. Our inter-
est is in requirements engineering, and hence, we have
come to focus on step 1, the evolution of requirements and
the assumptions that are generated as residue. Our studies
of FlexLM and Lotus Notes (and systems of their ilk) dic-
tates a focus on step 1, a model of requirements engineer-
ing for dynamic environments, while allowing steps 2 and
3 to move to the background. For example, while (i) auto-
mating the implementation of requirements monitors from
lower level Lotus Notes monitors, and (ii) restructuring a
Lotus Notes system given detected failures from monitor-
ing are both interesting problems, neither is on the critical
path, we believe, to deriving value from the research we
outline here. Step 1 is. Our current effort is directed
towards bringing tool support to the requirements engi-
neering of applications in dynamic environments, and the
fielded evaluation of those tools in such systems as Lotus
Notes.

7: Conclusions

Systems such as FlexILM and Lotus Notes are but a
small representative example of systems that must operate
in dynamic environments. The ‘soft’ requirements of such
systems are challenging to balance in the context of their
operating environment, and their designs must necessarily
make assumptions about that environment. We have
presented case studies demonstrating the promise of
monitoring as the means to determine when those
assumptions are violated, and whether, as a consequence,
requirements are not being met. It is particularly interesting
to note that although the initial expression of requirements
often lacks formality, requirements in conjunction with
assumptions readily suggest easily formalized monitoring
specifications.

We have found that our study of changing environments
has given us a new perspective on goal-directed
requirements acquisition work. Viewing goals as a type of

idealized requirements, alternative goal decompositions
(sometimes) correspond to viable alternative designs,
where selection has been made on the basis of assumptions.
In these cases, we provide a different kind of payback to the
designer: in return for that designer explicitly recording the
idealized requirements, their subdivisions and underlying
assumptions, we may generate run-time monitors, which
serve to make the resulting system more robust in the face
of environmental change. Alternative designs that are
recorded become guides for future system modifications
needed to work under new environments.

In conclusion, we believe a focus upon requirements of
systems that operate in dynamic environments suggests the
need for monitoring as a means to guide the appropriate
evolution of those systems. Current practice leaves a gap
between the support provided to system administrators, and
the challenges they face in maintaining their systems in
dynamic, evolving environments. Our approach is intended
to help bridge that gap.

8: References

[Cohen, 1989] D. Cohen. Compiling complex database
transition triggers. In Proceedings, ACM SIGMOD Interna-
tional Conference on the Management of Data, Portland, Or-
egon. SIGMOD RECORD 18(2), June 1989.

[Dardenne, van Lamsweerde & Fickas, 1993] A.
Dardenne, A. van Lamsweerde and S. Fickas. Goal-directed
Requirements Acquisition. Science of Computer Program-
ming, 20(1-2):3-50, 1993.

[Lehman, 1980] M.M. Lehman. Programs, Life Cycles,
and Laws of Software Evolution. In Proceedings of the IEEE,
68: 1060-1076, 1980.

[Liao, 1994] Y. Liao. Efficiently Computing Derived Per-
formance Data. Automated Software Engineering, 1(1):11-30,
1994.

[LotusNotes, 1994] Lotus Notes Release 3.1 Administra-
tor’s Guide. Lotus Development Corporation, 1994.

[Mansouri-Samani & Sloman, 1993] M. Mansouri-Samani
and M. Sloman. Monitoring Distributed Systems (A Survey).
Imperial College Research Report No. DOC92/23, Imperial
College, Dept. of Computing, 180 Queen’s Gate, London
SW7 2BZ, UK (revised version published as Chapter 12 of
Network and Distributed Systems Management, M. Sloman
(ed.), Addison Wesley, 1994: 303-347.

[Robinson&Fickas, 1994} Robinson, W., Fickas, S., Con-
flict Resolution During Requirements Engineering, In Pro-
ceedings of the First International Conference on
Requirements Engineering. IEEE 1994; 206-215.

147

